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The Shapes of Bowed Interfaces in the 
Two-Dimensional Ising Model 
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We show that properly normalized net energy fluctuations associated with inter- 
faces in two-dimensional Ising models are described, asymptotically, by random 
walk partition functions. Two examples are investigated: one is a droplet on a 
wall, and the other is two nearby, ideally parallel interfaces; the mean shapes of 
the interfaces in both cases prove to be elliptic, bowed outward from the wall 
or from each other, the semiminor axis of the latter ellipse being l /x/2  that of 
the former, in accord with random walk results. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

In ref. 1, it is shown that random walk pictures and calculations can be 
used to study a great variety of interfacial problems in two-dimensional 
systems. It should be possible to reproduce those results by exact Ising 
model calculations. It is also desirable to identify which Ising variables 
correspond to the partial partition functions for random walks. The objec- 
tive of the present work is to identify the appropriate Ising variable by 
exactly computing two specific problems concerning the shapes of equi- 
librium interfaces and, incidentally, to cross-check the random walk picture 
on a specific new problem. 

For definiteness, we consider a 2D Ising strip of infinite length and 
height L, with spins si, i =  1, - 1  at sites (i, j). The horizontal and vertical 
reduced ferromagnetic couplings between nearest neighbor spins are Kh 
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and K~, respectively. In order to locate the interfaces, the expectation of 
some local variable or density is needed. We find that the subtracted energy 
density, or the energy fluctuation, is an effective object for the purpose3; 
in addition, we find that energy fluctuations coincide with random walk 
distributions in the asymptotic regime. 

A (horizontal) energy density is the product of a pair of nearest 
neighbor spins, 

f'n,m ~ S  . . . .  1Sn, m (1.1) 

Hence it takes the value + 1 for an ordered bond (with parallel spins) and 
- 1  for a disordered or broken bond. A spin configuration can thus be 
specified by drawing lines connecting all the broken bonds. A typical 
configuration in a two-phase coexistence regime consists of many closed 
bubbles and one or more open, indefinitely long interfaces. The energy 
density expectation 

( ~ n , m ) = 2 ~ n ,  me E / k V Z  (1.2) 

where Z = Z e  -e/kr is the partition function subject to appropriate 
boundary conditions, measures the average presence of both the bubbles 
and the interfaces at site (n,m). However, if we subtract from (en, m) 
the pure-phase contribution, i.e., let ( & ) - ( e ) - ( e ) o ,  where ( ' ) 0  is 
expectation for the corresponding system without the interface, then the 
contribution from the bubbles is removed. This net energy fluctuation is 
then an effective tool for studying the location of the interfaces (see footnote 3). 
As an example, consider the case of a vertical interface extending from 
(0, 0) to (L, 0). It can be shown that asymptotically one has 

e--m2/2b2n e m2/262(L n) 

(6~,,,,,,) ~ -2(2zcb2L)1/2 (27zb2n) 1/2 [2rcb2( L _ n)] 1/2 (1.3) 

where b =  (sinh 2Kh/sinh 2K~ sinh a) 1/2, while the interracial flee energy is 
o-= 2Kh +In  tanh K~. The behavior of the interface as n oc L ~ oo and 
rn oc L ~ for 6< ,  =,  or >1/2 which has been found from the local 
magnetization (refs. 4, 5, and 2, Section III. A) is completely captured in 
expression ( 1.3 ). 

Aside from the first factor, the right-hand side of (1.3) is precisely the 
probability t61 of one n-step walk and another independent (L-n ) - s t ep  

3 The suggestion that energy densities may be an appropriate tool for investigating interface 
profile locations has been made by Abraham (ref. 2, Section III. B). It has also been utilized 
recently by Abraham and Ko (3) in an exact derivation of the modified Young equation for 
partial wetting in a two-dimensional Ising model. 
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random walk both going from the origin to the point m. This is not a coin- 
cidence, but a general rule. The interracial behavior of exact Ising model 
results is strikingly similar to random walk behavior, as will be shown in 
this paper. The connection can be made precise by considering the energy 
fluctuation normalized by Zo, the pure-phase partition function, instead of 
by Z. Let -&(n ,  m)=-(Z/Zo)~&n.m); then (1.3) can be rewritten as 

&(n, m),,~ 2Q~ o QL_,(m) (1.4) 

where Q~ is the asymptotic partial partition function of an n-step 
random walk (6) from the origin to the point m, namely, 

Q~ = e ~ m2/262n/(21~b2n)l/2 (1.5) 

Thus, the net energy fluctuation associated with interfaces should be nor- 
malized by the pure-phase partition function, in order to bring to forth the 
underlying random-walk character. Note that one might be tempted to 
associate the ratio of partition functions Z/Zo with a total partition 
function of random walks; but in fact, it is just another partial partition 
function of an L-step walk, in this case, which returns to the origin, i.e., 
Z/Zo ~ Q~ 

We consider two problems concerning the shape of interfaces. The first 
is the shape of a droplet of width N lattice spacings on a wall, as sketched 
in Fig. 1. 4 Let m and n be the distances along and from the wall as 
measured from one edge of the droplet. We find 

6e(n, m) ~ QW(n) QWu_m(n ) (1.6) 

4This problem has also been considered by Abraham and Issigoni, {7) who studied the 
magnetization profile at the midpoint of the droplet and found that the mean interface posi- 
tion there was at a distance proportional to N ~/2 from the wall, in accord with our results: 
see below and ref. 1. 

Fig. 1. 

 vL. 
4-4- § 2 4 7  

'I / /  

A typical configuration of the interface for a droplet of overturned spins on a wall 
with its endpoints pinned by surface fields, as indicated. 
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where w Qm (n) is the partition function of an m-step walk from an initial 
point at distance (measured in lattice spacings) of no = 1 from an absorbing 
wall to a point at distance n, namely, 

e am n e  n2/2b2m 

QW(n) = (~bZ12)l12 m3., 2 (1.7) 

See ref. 1. Note that for an anisotropic Ising model, o- and b depend on the 
anisotropy, and in this case they differ from those in (1.5) by an inter- 
change of K h and K v. The formula (1.6) is precisely that predicted from 
random walk arguments; ~1) hence the prediction of an elliptic shape for the 
most probable droplet configuration follows exactly for Ising models as 
well by the arguments of ref. 1 (Section 7.!). 

The second problem we consider is two vertical interfaces (s)'5 across 
the lattice with length of order L which are pinned N lattice sites apart, 
as shown in Fig. 2. However, if N is small, it is not correct to describe 
the situation as two vertical interfaces, for it becomes more favorable 
energetically for the interfaces to flip over into two horizontal ones, each 
fluctuating near one wall. Such behavior is not possible for more general 
types of interfaces, where, for example, there may be three different phases 
separated by the two vertical interfaces. Thus, we impose the restriction 

s It should also be noted that Abraham and Reed (~) actually presented expressions for two 
interfaces at finite separation N in an Ising model in their study of a single interface; 
however, they analyzed in detail only the situation N ~  ~ .  

/ / / . / 1 1 / _ 1 1 1  

+ " + i  . . . . . .  " + * * 

* * 

Kh = 

Fig. 2. A typical configuration for two nearby interfaces with pinned endpoints. 
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that such flipping is not allowed. This is done by considering 2 =  
Z - l i m r ~  oo Z, and a similar subtraction for 6e. Then we find that 

0 2 0 2 Z / Z  o ~ QL(O) - QL(N) (1.8) 

and 

o &(n, m) ~ 2Q~176 QO ,(m) + Q , ( N -  m) Q ~  m)] 

_2QO(N)[QO(m) o Q L _ , ( N _ m  ) + Q O (N_ m )  QO , (m)]  (1.9) 

The partition function ratio consists of the probability of independent 
random walkers, one of which walks from the origin to the origin, while 
the other walks from point N to point N in L steps, minus the probability 
that they cross each other to reach the other's destination. The loss of 
entropy amounts to a repulsion between the interfaces, and the distribution 
of & in (1.9) reflects this fact by containing the negative terms, which con- 
centrate more toward the center near the midpoint; hence the interfaces 
curve outward on the average. In the limit N 2 ~ L ~ 0% the most probable 
distribution is located at 

2x 2 + (2b2/L) y2 = bZL/2 (1.1o) 

where x = m - N/2 and y = n - L/2. Thus, the mean shapes of interfaces in 
this case are also ellipses. 6 Since the second fluctuating interface can bow 
away, it is not surprising that the ellipse here has a semiaxis reduced by a 
factor of 1/,,/2 as compared with that for a droplet on a rigid wall. In fact, 
this factor can also be predicted precisely by the random walk methods of 
ref. 1, as we explain at the end of Section 5. 

The rest of the paper is organized as follows: Section 2 introduces the 
transfer matrix method of Onsager (9) and Kaufman (l~ for computing 
energy fluctuations; we show that they can be formulated in terms of 
Pfaffians of generating functions. Section3 evaluates the generating 
functions. In Section 4, we investigate the asymptotic behavior of a typical 
generating function--the partition functions of random walks show up 
naturally. Section 5 finds the shapes of a droplet on a wall, and of two 
nearby interfaces. 

6 It is worth remarking that the spread of a single interface going across a strip also has an 
elliptic character, as follows from Eq. (1.3) and from Abraham's  analysis of the magnetiza- 
tion profile [see ref. 2, Section III. A, Eq. (3.6)] and indicated by the random walk analysis 
of ref. 1. 
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2. E N E R G Y  F L U C T U A T I O N  IN T E R M S  OF 
G E N E R A T I N G  F U N C T I O N S  

Consider a square Ising lattice with spins s;.j= 1, - 1  at site (i, j), 
-M<<.i<~M, O<~j<~L. Let the reduced couplings between nearest 
neighbor spins be K~ and Kh for the vertical and horizontal bonds, respec- 
tively, and the corresponding row-to-row transfer matrices be V~ and Vh. 
In terms of the Pauli matrices, (9) we have 

0 
J J 

where a 7, ~=x ,  y,z ,  satisfies [a~, ~ ]  = 0  for k C j  and a f a f = i a } ,  etc.; 
and the dual couplings are given by coth K* = exp 2K~. It is also useful to 
define the symmetrized transfer matrix V, 

V= - x/2 v-v V ~/2 (2.2) 

Denote the state with all spins up (down) along a row as r + )  
( [ - ) ~ I ~ j [ $ ) j ) ;  and the convention that a~ ]~) j= + ]~)j is used. The 
spin reversal operator P J - F r Y  t_ ,~q  reverses the spins from the kth to k - - l l i = k \  ~ i !  

the j th column. Then the partition function for a one-phase system Z0 and 
for the systems of Figs. ! and 2 (Z1 for Fig. 1 and Z2 for Fig. 2) can be 
expressed as 

Zo= (-~l  VL I-~ ), Zl  = (-~l  PoN-1vL [..~ ), 
(2.3) 

p N -  1 v L  l i )N-  1 z 2 = < + l - o  - - 0  I+> 

Similarly, expectations of energy density g.,m=S . . . .  lS.,~ in the two 
systems are given by 

= V n x V L n (e . ,m),  ( + [ P g - l - e m  t + )/Zo (2.4) 
p N - -  1 I/m x V L n p N  1 (~.,m)2= (+1 ~0 - - ~  ~0 I+ )/Zo (2.5) 

where ef = a ~ l a j  ~. Note that we normalize with the partition function Zo 
for the pure phase. 

The transfer matrices can be put into a simple form in terms of 
anticommuting operators Fj, which satisfy &vj+Gv~=26~ j  and are 
related to the Pauli matrices by (1~ 

~_ j-1 _ j - 1  ( 2 . 6 )  ~ j  - -  P _ M F 2 j ,  a f  t - -  P M I ' 2 j +  

Then the relations 

gf = af_,  af  = iF2j_l F2j, {T; = --iF2jF2j +1 (2.7) 
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lead to quadratic forms for the transfer matrices, namely, 

J J 
Because we are interested only in "even" operators in the limit M ~ ~ ,  the 
summations in (2.8) can be taken to be cyclic. To express the spin reversal 
operator in terms of the F's, the relations a~a~ I_+)=/+_)  and 

�9 / 3 k  ipj P~ = - - - M ~ - ~  are used to obtain 

(+I P~= <+1 r2~r2j+2, P~ I+) =F2j+S2~ 1+) (2.9) 

Then (2.3)-(2.5) can be expressed purely in terms of the F's. 
An advantage of using the anticommuting operators is that we have 

available the thermodynamic Wick theorem(11'12~: Consider a set of 
operators Op which are products of exponentials of bilinear expressions in 
the F's, namely, 

p v  Op- ~ exp 2p. ~. Am, r,,r, (2.10) 
v m , n  

Then 

t 2plUS \ // 2s t Tr FiOp)/( HOp =Pf({X~t}) (2.11) 
1 / [ \ ~ - - 1  

where 

Xk,=Tr [(p~I< ~ Op)F,~ Qg<, Op)Fi,(p~>, O,)/Tr(~pOp)j (2.12) 

and the Pfaffian for the triangular array Xkj with 1 ~< k < j ~< 2s is defined 
by summing all possible contractions with a sign determined by the 
permutation P, 

Pf({Xkj})-~ ( - 1 )  e 12I Xp~2k l)P(2k) (2.13) 
P k=l 

In order to exploit the theorem, it is necessary to convert the matrix 
elements of (2.3)-(2.5) to traces. This can be done by gluing the top and 
bottom rows of the lattice and sending the horizontal couplings along that 
row to infinity. Since the spins in the row will be forced to line up in the 
limit, the two degenerate elements ( + I " I + ) and ( - I  " l -  ) are selected. 
Define 

Vo = exp (Ko ~ a~@+~), Ko--*oe (2.14) 
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Then (2.3#(2.5) are converted to the desired form of traces, according to 

Z o = Tr[ VLVo], Z1 = Tr [FoV2x VLVo], 

Z2 = Tr[FoF2N vL~'2NI~o Vo] 
(2.15) 

and 

<e,,m)l = i Tr[ FoFzN VnF2m_ 1-r'2m V L nVol/Z 0 (2.16) 

(e,,m>2=iTr[FoF2uV"F2m_~F2m VL "FzNFoVo]/Z o (2.17) 

where lim,%~ oo is understood. 
The role of the triangular array Xgj in (2.12) is played, in our 

problems, by the generating functions ~ defined by 

G(n,l)j,k- lira Tr[VnFjVt-nFkVL-~Vo]/Tr[VLVo] (2.18) 
K0~oo 

The partition function for Fig. 1 follows just from the definition of the 
generating function, i.e., Z1/Z o = G(0, 0)o,2u, while the Wick theorem gives 
the subtracted energy density as 

i&l(n,m)=G(O,n)o,2,,,G(O,n)2~V, Zm l -  {2m~--~2m- 1} (2.19) 

where 6 e l ( n , m ) - - ( f S n ,  m)l~-(Z1/Zo)(gn, m)O; thus, the contributions 
from bubbles are removed, and the sign is changed so that the result is 
positive. 

The two-interface partition function as given in (2.15) consists of three 
pieces in terms of the generating functions; two of them correspond to inde- 
pendent interfaces. If the interfaces are far apart, i.e., if N--* 0% they behave 
like two independent vertical interfaces; in the opposite limit, the situation 
will be dominated by two horizontal interfaces of length of order N, each 
attaching to a wall. We disallow the latter situation by considering the sub- 
tracted partition Z2 = Z 2 - l i m L ~  ooZ2. This restriction can be justified if 
we imagine that there are more than two phases being separated by the 
two interfaces as in a wetting situation (1,14~ or in systems undergoing 
a p x 1 (p~>3) commensurate-incommensurate transition38) Then this 
restricted partition function is given by 

Z z / Z  0 = G(O, L)o, oG(O, L)2N, 2N - -  G(0, L)0 ' 2NG(0, L)zN, o (2.20) 

A direct application of the theorem to the energy density given by (2.17) 
yields many terms. Here we apply the same restriction as in Z,2 and sub- 
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tract the pure phase part. If we denote the result by 6e2(n, m), we find, in 
terms of the generating functions, 

i6~32(r/, m) = G(0, L)o,o [G(0, n)2N,2m 1 G(n, L)zm, 2N-- {2m ~ 2m - 1 }l 

+ G(O, L)2N, 2N [G(0, n)o.2m_ ~ G(n, L)2m, o - {2m ~ 2m - 1 }] 

+ G(O, L)2N, O [G(0, n)0 ' 2m G(n, L)zm- ~,2N- {2m ~ 2rn - 1 } ] 

+ G(0, L)o, zu [G(0, n)2u, Zm G(n, L)z m_ 1,0 -- {2m ~ 2m -- 1 } ] 

(2.21) 

The first (second) term is a one-interface term in the sense that the inter- 
face on the left (right) is disconnected from the energy operator; the last 
two terms describe the crossings. The generating functions are computed 
next. 

3. E V A L U A T I O N  OF THE GENERATING F U N C T I O N S  

First consider the special case G(0, 0)j,k in (2.18). By exploiting the 
anticommutation relation for the F's and the cyclic property of a trace, one 
can establish (~2'13) 

G(0, 0)j,k = 26j, k - T r [F j  VLVoFk]/Tr[ VLVo] (3.1) 

If we commute Fj through VLVo to the right in the second term, we get an 
equation for G(0, 0). [Note that G(n, l)j.k can be considered as a matrix in 
(j, k).] If 

then 

V~IFjV~--~(R~)j~Fk for c~=h,v,O (3.2) 
k 

G(O, O) = 2 1 -  RLRoG(O, 0) = 2 ( I +  RLRo) 1 (3.3) 

where R = R~/ZR~R 1/2. The matrices R~ can be computed from (2.8) using 
FkFj+FjFk=26k~; the results are 2 x 2  block cyclic matrices. Let the 
(i, j ) th  block be denoted ri j. Then for the transfer matrices Vo, Vh we 
have rj = 0 for j va 0, and 

cosh 2K~ i sinh 2K~) 
r ~  - i s i n h 2 K ~  cosh2K~J '  ~ = 0 ,  h (3.4) 
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For the other transfer matrix V~, one gets rj = 0 for j-~ 0, -t-1, and 

0 
= ( c o s h 2 K *  0 , ~ = ( / s inh  2K* r~ c o s h 2 K * )  - r l = r  I ~) (3.5) 

Block cyclic matrices can be diagonalized by Fourier transformation 
the same way as a scalar cyclic matrix. Thus, if X =  (x~_fl is a block cyclic 
matrix with x,_j  the (i, j ) th block, one has 

M 
X(O9) = ~ xke -ik~ (3.6) 

k =  M 

where, in the limit M ~ 0% one obtains 

1 f~ do X(co) e 'k~ xk = 2---~ _ (3.7) 

From (3.4)-(3.6) the Fourier transformations of the R~ matrices are found 
to be 

cosh 2K~ i sinh 2K~) 
R~(co)= - i s i n h  2K~ cosh 2K~]' c~=h,O (3.8) 

and 

cosh 2K* - i sinh 2 K ' e -  ~ 
Rv((~ i " , io, smh 2Kv e cosh 2K* ) (3.9) 

Likewise, the matrix corresponding to the symmetric transfer matrix 
171/2 ][/* V =  --h --v Vlh/2 is  given by 

R((.o) = Rh(O)) 1/2 Rv((D ) Rh((.o) 1/2 = b/((/)) D ( c o )  u ( co )  1 ( 3 . 1 0 )  

with 

D(o)) = , u ( 6 9 )  = e_ia.(co)/2 j (3.11) e 7(co) ~ _ie-ia*(ro)/2 

Here the functions 7(~0) and 6*(m) are Onsager's well-known functions, (9) 
which have the following factorized form: 

sinh y(o)) - 
sinh 2Kh 

2 sinh 2Kv 
[(o:~-1 eiO,)(l_~le i,,,) 

• (c~21 _ ei,O)(1 _ g2e-io~)] 1/2 

eia,~o,, = [(1 -- al ei~')(1 -- a2e-'~o)] '/2 
 2ei~ - "~ L 

(3.12) 

(3.13) 
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where a t ~ =  exp 2(K~ + K*), (X2 1= exp 2(K~-  Kh*); and the branch of the 
square root is taken to be positive at co = 0. 

On substituting (3.8), (3.10), and (3.11) in (3.3), the Fourier transform 
of G(0, 0) can be readily computed. The general case G(n, l), 0 <~ n <~ l~  L, 
can be obtained similarly by relating it to G(0, 0) using (3.2); hence we 
obtain 

G(n,l)=R "G(O,O) R~=2(R '~ l+RC-tRo Rn) t (3.14) 

where we have used the property R - t =  rR, the transpose of R. These 
Fourier transforms can be evaluated directly, since only 2 x 2 matrices are 
entailed. Note the simplifying relation resulting from the limit K o ~ 0% 
namely, 

Ro(co)/A ~ (  l i )  (1 i) as A=e2K~ ~ oo (3.15) 

Thus, the final solution is given by 

( e -  n2i(~o)~2(o)) _ e -  nl~(~))~(co)'~ 
G(n, l)(co)=2u(co) _e_nl2?,(o~)qD(co) e_nOT(~) j 

xu(co) 111 +O(e-2C)] (3.16) 

where ~(co)-tan[6*(co)/2] .  Note that n o = l - n ,  n l l=l+n,  nl2= 
2 L - l - n ,  and n 2 = 2 L - l +  n represent the direct, one-image, and two- 
image separations. Finally, the Fourier transforms may be inverted to give 

1 
f~ do) G(n, /)(co) e i(j-k)c~ (3.17) G(n, l)[j, k l - 27r ,~ 

where G(n, l)Ej.kl denotes the 2 x 2 submatrix of G(n, l) consisting of the 
( 2 ) - 1 ,  2j)th rows and the ( 2 k - 1 ,  2k)th columns. This expression and 
(3.16) constitute our general results for the generating functions. 

4. ASYMPTOTICS OF THE GENERATING FUNCTIONS 

If only the most dominant terms for the generating functions in (3.16) 
are retained, the G(n,l)Ej, kl are functions only of y=l -n>~O and 
x = j - k .  Denote these 2 x 2 matrices as F(x, y); we then have 

1 S F(x, y)=~-~ doe  Y'/(~~176 at(co ) (4.1) 
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where the row vector is 

)'(i 1),sec 16"(~1, 
ak(oO) = ((ie-i6 (,o)/2 eia (,o)/2), 

k = 0 ,  L 

otherwise (4.2) 

while ak(~o) t denotes the adjoint of ak(~o). The singularities of the integrand 
in (4.1) are formed by a pair of branch cuts from 7(co) and 6"(~o), as 
sketched in Fig. 3. 

If y ~  ~ ,  the integral in (4.1) is dominated  by the saddle point  at 
co = 0. This follows from the equat ion (91 

cosh 7(co) = cosh 2K h cosh 2K* - sinh 2Kh sinh 2K* cos co (4.3) 

Therefore 7(0) and 7"(0) attain special significance; accordingly, we define 

o-,, = 7(0) = 2(Kh -- K*) 
(4.4) 

by = 7"(0) 1/2 = (cosh 2K v - cosh 2Kh*)- 1/2 

where the dual couplings sat isfysinh2K s i n h 2 K * =  1 and t a n h 2 K  
cosh 2K* = 1. Since 6 " ( 0 ) =  0, the asymptotics  of the generating functions 
is found to be simply 

F(x, y ) ,~Q~ i 1 -- i) (4.5t 
where 

Q~ ~~ x2/2b~Y/(2~zb~y)l/2 (4.6) 

-1 -1 

Fig. 3. The branch cuts for Onsager functions y(03) and 6*(03) in the complex exp io~ plane 
for T< T,: See Eqs. (3.12) and (3.13). 
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Thus, each asymptotic generating function corresponds just to a random 
walk partition function, where a~ and by are the single-step free energy and 
the mean step length, respectively. 

On the other hand, if x ~  Go (x can always be chosen positive) 
is desired, the contour of integration should be deformed around the 
branch cut, and the dominant  part  comes from near the branch point at 
exp io) = 0~ 2 . Define 

( - 2v)1/2 
ah -- - I n  ~2, b h =- lim - - ,  

ei6*(~o) 
c - lira - -  = bh sinh 2Kh (4.7) 

~ o  ( - 2 v )  1/2 2 

where v = -ioJ - ah. As the notation suggests, a h and bh are the same as a~, 
and b~, except that Kh and K~ are interchanged. In this case, the 
asymptotics of each element (k, j )  of F(x, y) typically has the form 

1 f~ iXmeiB6.(~o) F(x, Y ) k , j ~ - ~  e vT(ol+ for B = 0 ,  1, - 1  
7C (4.8) 

- f ( x ,  y) e-~hXe-y:/Zb~x/(2rt)l/2 

where one has 

~ y/bh X 3/2, fl = 0 

f ( x ,  y ) =  ~c(y2/b] - x ) /x  5/2, f l=  1 (4.9) 

( 1/cxl/2, fl = -- 1 

Note that the case fl = 0 gives the partition function of a random walk near 
an absorbing wall, QxW(Y); see (1.7) and ref. 1. 

5. SHAPES OF INTERFACES 

The ratio of partition functions and the energy fluctuation for a 
droplet on a wall are found from (2.19), (4.1), (4.2), and (4.7) (4.9) to be 

Z1 - - ~ 2 b h c Q W ( 1 ) ,  
Zo 

~se l (n ,m)~QW(n)QW_m(n  ) (5.1) 

Thus, 6el is precisely described by two independent walks as predicted in 
ref. 1; hence the elliptic shape of the most probable droplet configuration 
follows exactly as shown there. 
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For the case of two interfaces, we use (2.20), (2.21), (4.1), and (4.5). 
The ratio of partition functions is simply 

2 2 / Z  o ~ Q o ( O ) 2 _  o 2 QL(N) (5.2) 

Thus, the partition function is reduced from that for two independent 
walkers to reach their respective destination across the strip, by the amount 
for the walkers to cross and reach the other's destination independently. 
This reduction in partition function, or loss of entropy, amounts to a 
repulsive force between the interfaces, as expected. (1'15~ For  the local 
probability distribution the result for the energy fluctuations is 

6~2(n, m ) ~  o o {x  - x }  ~2QL(O)[QL/2+ y(N/2 + x ) o Q L/2- y( N/2 + x) + ] 

o o -- 2Q L ( N ) [  Q L/2 + y( N/2 + x)  Q~ y( N/2 - x)  + { x ~ - x } ] 

(5.3) 

where y = n - L/2 and x = m - N/2 are distances measured from the center 
of the two interfaces. The two terms here correspond to the two terms 
in (5.2). The maxima of the first term are near x = +_N/2. The negative 
probability represented by the second term is concentrated more closely on. 
the center; hence the net distribution bulges outward, as is consistent with 
the repulsion picture. 

Writing (5.3) out in detail yields 

4e 2L~ 3e2(n, m ~ e - L(Nz + 4x2)/Sz(y) 

/ N L x  e N2/2b~L Nyx~  (5.4) •  cosh cosh 
z ( y ) J  

where z ( y ) = b ~ [ ( L / 2 ) 2 - y 2  I. In the limit N 2 ~ L ,  we may expand the 
functions in the parenthesis for small arguments; the most probable 
distribution is again found to be an ellipse, namely, 

2x 2 + (2b~/L) y2 = bZL/2 (5.5) 

Compared with the ellipse for a droplet on a wall, the semiaxis here is 
reduced by a factor of l/x/2. This is consistent with the idea that the other 
interface is not rigid and so is also repelled. 

The result (5.5) can also be anticipated by random walk methods. The 
effective potential of repulsion W(l)  between an interface/walk of diffusivity 
b 2 and a wall at distance I is l k  B Tb2/l 2, while between two interfaces/walks 
of diffusivities b~ and b~, it is (1) �89 T(b~ + b~)/l 2. Thus, the interface repul- 
sion is strengthened. However, one must compare the distance of separa- 
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I I I 1 _ 1 1 1 1  

2 2 
b I 

/ / 

Fig. 4. In the random walk picture, the interface of Fig. 1 can be described by a walker of 
diffusivity b 2 where the maximum separation with the wall /max is the semiaxis of an ellipse. 
The interfaces of Fig. 2, for N 2 ~ L, are described by two walkers of diffusivities b~ and b~ 
(bl = b2 here), where /max is the complete axis. 

tion in each case, which, at maximum, represents the semiaxis in the wall 
case, but constitutes the complete axis for two interfaces: See Fig. 4. Thus, 
the equation of the ellipse in the wall case goes over to that for the two 
interfaces by a replacement of x ~ 2 x  and b2 - -*2b  2 (with bt =b2). This 
leads precisely to (5.5) and, hence, to the factor l /x/2.  The full distribution 
for two (possibly dissimilar) interfaces can also be found from ref. 1, in 
analogy to (1.6), if (1.7) is replaced by the distribution for two distinct 
vicious walkers [see Eq. (4.18) of ref. 1]. 
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